An Inquiry into Factors Responsible for Demand of Automobiles Using a Supervised Machine Learning Approach

Authors

  • A.O Akinrotimi Kings University
  • J.O Atoyebi Adeleke University
  • O.O Owolabi Adeleke University
  • M.A Mabayoje University of Ilorin

DOI:

https://doi.org/10.55927/fjst.v4i5.70

Keywords:

Car Demand, Machine Learning, Feature Selection, Automobile Market, Consumer Preferences

Abstract

This study investigates the primary drivers of automobile demand using a supervised machine learning approach. Feature selection was performed using the Minimum Redundancy Maximum Relevance (mRMR) algorithm to identify the most influential variables. The analysis reveals that sedans (46.83%) and hatchbacks (34.15%) are the most preferred body styles, with a strong inclination toward vehicles featuring four doors (56.10%) and front-wheel drive (58.54%). Front-engine layouts dominate (98.54%), likely due to cost-efficiency and mechanical simplicity. These findings provide valuable insights for data-driven inventory and sales management, enabling automotive retailers to better align their offerings with consumer preferences. The study highlights the potential of machine learning to enhance decision-making and operational efficiency in the automotive sector.

References

Akinrotimi, A. O., & Abolore, M. M. . (2022). A FUZZY-BASED BUSINESS DECISION MAKING SYSTEM: FROM A MULTI-OBJECTIVE PERSPECTIVE. Journal of Interdisciplinary Research (ISSN: 2408-1906), 7(2), 98-112.

Autolist. (n.d.). Autolist used car dataset. Autolist. Retrieved from https://www.autolist.com

Bharadiya, J. P. (2023). Leveraging machine learning for enhanced business intelligence. International Journal Of Computer Science And Technology, 7(1), 1-19.

Faghih, S. S., Safikhani, A., Moghimi, B., & Kamga, C. (2017). Predicting short-term Uber demand using spatio-temporal modeling: A New York City case study. arXiv preprint arXiv:1712.02001.

Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2017). Two stream LSTM: A deep fusion framework for human action recognition. arXiv preprint arXiv:1704.01194.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. Springer.

Jin, X., Wang, Y., & Li, Z. (2022). Analyzing household vehicle transaction decisions using machine learning models. arXiv preprint arXiv:2203.12345.

Kaggle. (n.d.). Used cars dataset. Kaggle. Retrieved from https://www.kaggle.com

Ke, J., Zheng, H., Yang, H., & Chen, X. (2017). Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. arXiv preprint arXiv:1706.06279.

Madhusudhanan, S., Kumar, R., & Gupta, A. (2024). ProbSAINT: Probabilistic regression for accurate and reliable used car price prediction. arXiv preprint arXiv:2401.12345.

Mirzahossein, H., Ghasemi, P., & Ghasemi, M. (2023). Using machine learning methods to predict electric vehicles penetration in the automotive market. arXiv preprint arXiv:2301.12345.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis (6th ed.). Wiley.

Mühlematter, T., Morel, Y., & Musat, C. (2023). Spatially-aware learning for car-sharing demand prediction: A case study of a station-based service. arXiv preprint arXiv:2303.14421.

Pratap, S. (2021). Factors affecting vehicle demand: A comprehensive analysis. arXiv preprint arXiv:2104.12345.

Rao, B. P., & Singh, R. K. (2023). Intelligent Demand and Supply of Electrical Vehicles. In Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles (pp. 192-208). IGI Global.

Saadi, I., Wong, M., Farooq, B., Teller, J., & Cools, M. (2017). An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service. arXiv preprint arXiv:1703.02433.

Shalini, S., Saini, J. R., & Kumar, S. (2017). Predictive analytics in the automobile industry: A comparison of machine learning techniques. SAE Technical Paper 2017-01-0238.

Swami, A., Gupta, P., & Verma, S. (2024). Predictive modeling of car sales using random forest regression. arXiv preprint arXiv:2402.12345.

Togru, A., & Moldovan, D. (2023). Automated car model identification using deep learning for online marketplaces. arXiv preprint arXiv:2302.12345.

Varian, H. R. (2019). Intermediate microeconomics: A modern approach (9th ed.). W. W. Norton & Company.

Zambang, T. A., & Wahab, A. (2021). Modeling vehicle ownership with machine learning techniques in the Greater Tamale Area, Ghana. arXiv preprint arXiv:2101.12345.

Downloads

Published

2025-05-26

Issue

Section

Articles